Softpanorama

May the source be with you, but remember the KISS principle ;-)
Home Switchboard Unix Administration Red Hat TCP/IP Networks Neoliberalism Toxic Managers
(slightly skeptical) Educational society promoting "Back to basics" movement against IT overcomplexity and  bastardization of classic Unix

Intel CPUs Price/Performance Ratio

News Computer Hardware Recommended Links Overclocking Benchmars Instruction Set Architecture
Celeron Pentium   Duron Athlon Etc

Current generation of Intel CPUs so called 3rd Gen  CPUs are based on 22 nm technology and are priced very similar to 32 mn technology counterparts. Due to smaller size they should be slightly faster and more energy efficient then predecessors. But difference for desktops is not that great as Intel is close to technological dead zone when further shrinking of the core become not impossible but way too costly.  Despite smaller size Intel was unable to raise the clock speed of the CPUs. Unfortunately for desktop enthusiasts, the most significant changes center on the integrated graphics engine, which most of advanced user simply don't need as they use a standalone graphic card. An entry level card Radeon HD 6570, available for under $60, doubles Ivy Bridge’s HD Graphics 4000 score. The only attractive part is a dual-channel memory controller with DDR3-1600 data rates. An interesting part is that it can be overclocked to 2667 MT/s (up from 2133 MT/s) in more granular 200 MHz increments.

For laptops the story is different as integrated graphic is the way laptops live and die.  All mobile and desktop Core i7s get HD Graphics 4000, and all but one (3570K) mobile and desktop Core i5s get HD Graphics 2500. In HD Graphics 4000 up to three displays are supported natively.

As Tom's hardware Intel Core i7-3770K Review stated

Given a mainstream focus, the die driving Core i7-3770K is a quad-core, Hyper-Threaded part with 8 MB of shared L3 cache divided up into four 2 MB slices, same as the Core i7-2600K we reviewed more than a year ago. There are a handful of small tweaks to what the cores themselves can do. Intel says that those adjustments, plus tweaks in the cache and memory controller, help improve the number of instructions per clock cycle this architecture executes. We’ll be running per-clock comparisons between Ivy and Sandy Bridge to help quantify those claims as well.

Sandy Bridge-E is with the Core i7-3960X, the Core i7-3930K, and the Core i7-3820 are still probably more cost effective.  They support 1600 MHz memory, and the memory speed is probably more important factor then CPU speed for most but very low end CPUs.

But the most interesting from the point of price/performance ratio are processors of Intel i3 series:

They support memory  speeds up to 1333 MHz and you can get CAS 7 memory which is as fast as DDR3 1600 CAS 9. They are competitive with higher end CPUs at half or one third of the price. Here are SpecCPU results:

Fujitsu CELSIUS W410, Intel Core i3-2100
HTML | CSV | Text | PDF | PS | Config
Yes 2 1 2 1 36.8 38.1
Fujitsu CELSIUS W410, Intel Core i5-2500
HTML | CSV | Text | PDF | PS | Config
Yes 4 1 4 1 42.7 44.5
Fujitsu CELSIUS W410, Intel Core i7-2600
HTML | CSV | Text | PDF | PS | Config
Yes 4 1 4 1 44.6 46.4
Fujitsu CELSIUS W410, Intel Core i5-2400
HTML | CSV | Text | PDF | PS | Config
Yes 4 1 4 1 40.6 42.2

DDR3 1600 CAS 9 vs. DDR3 1333 CAS 7 - Memory - Motherboards-Memory

ddr3 1333 7-7-7-21 is actually more efficient than the ddr3 1600 9-9-9-28. it will give more bandwidth to the cpu so the whole system is more efficient in how it handles your data.

the advantage of slower but 2 lower on cas latency will give the equivalent usage of ram that is about 500mhz faster. so 1333 cl7 will be as efficient as 1800 cl9 ram.

The advantage of 1600mhz cl9 ram is it can often tighten the latency to 8-8-8-24 and give the equivalent performance of 2000mhz cl9 ram

rite now there is some cl7 1333 ram that will quite happily run at 1600mhz oc'd with its cl7 settings and that stuff will out perform 2100+ ram with cl9 settings... so its always worth checking the oc ability of slower ram as it may just surprise you.
 

On high end game and graphic enthusiasts can spend much more :-). But price performance ration is two to four times lower.
 

Second-Gen Core i7 Processor Family
 
Processor
 
Base Clock
 
Max. Turbo Clock
 
Cores / Threads
 
L3 Cache
 
Memory
 
Interface TDP
Core i7-3960X
*Unlocked
 
3.3 GHz
 
3.9 GHz
 
6/12
 
15 MB
 
4-channel
DDR3-1600
 
LGA 2011
 
130 W
 
Core i7-3930K
*Unlocked
 
3.2 GHz
 
3.8 GHz
 
6/12
 
12 MB
 
4-channel
DDR3-1600
LGA 2011
 
130 W
 
Core i7-3820
*Partially Unlocked
 
3.6 GHz
 
3.9 GHz
 
4/8
 
10 MB
 
4-channel
DDR3-1600
LGA 2011
 
130 W
 
Core i7-2600K
*Unlocked
 
3.4 GHz
 
3.8 GHz
 
4/8 8 MB
 
2-channel
DDR3-1333
 
LGA 1155
 
95 W
 
Core i7-2600
 
3.4 GHz
 
3.8 GHz
 
4/8 8 MB
 
2-channel
DDR3-1333
LGA 1155 95 W
 
Core i7-2600S
 
2.8 GHz
 
3.8 GHz
 
4/8 8 MB
 
2-channel
DDR3-1333
LGA 1155 95 W
 

Top Visited
Switchboard
Latest
Past week
Past month

NEWS CONTENTS

Old News ;-)

[Jun 08, 2021] Intel optimises Ice Lake Servers for the convergence of HPC and AI by Chris Mellor

Nov 23, 2020 | blocksandfiles.com

Intel's Ice Lake servers will unblock storage performance by reading data faster and loading it into a larger memory space. Storage writes are quicker too – that's because Ice Lake supports PCIe 4.0, more memory channels and Optane 200 series persistent memory.

Ice Lake is Intel's code name for the 10th generation Xeon processors which were introduced for laptops in August 2019. The server version, Ice Lake SP, is due in early 2021.

The company teased out some performance details last week to coincide with SC20. In her presentation for the supercomputing event, Trish Damkroger, GM of Intel's High Performance Computing Group, proclaimed: "The convergence of HPC and AI is a critical inflection point. The Xeon SP is optimised for this convergence."

We'll discuss that another time. Let's dive into the numbers.

In general, Ice Lake should provide up to 38 per cent faster SPEC floating point rate benchmark performance, at identical core count and frequency as a Cascade Lake Xeon. The greater memory capacity of Xeon SP Ice Lake servers translates into fewer IOs slowing down the processor, hence significantly faster app processing speed and storage IO overall.

PCIe Gen 4 is twice as fast as the current PCIe Gen 3's 32GB/sec maximum. The standard supports up to 16 lanes and 16Gbit/s data link speed to deliver 64GB/sec. This means stored data can be loaded into memory faster – and that memory can be larger with Ice Lake.

Ice Lake SP increases memory capacity with two more memory channels per socket, with eight x DDR4 channels. Xeon Scalable Performance (Skylake) series processors have two built-in memory controllers that each control up to three channels. That equals six memory channels per CPU [socket]. Up to two DIMMs are possible per channel, totting up at 12 DIMMs per CPU. So, a Xeon SP M-class CPU has a maximum of 1.5TB of memory, or 0.25TB per channel. Ice Lake increases the memory channel count to eight, handling 2TB of DRAM.

Trish Damkroger slide from her SC20 presentation.

Memory performance is faster at 3,200 MT/s, up from 2,933 MT/s. And bandwidth is increased to 190.7 GiB/s, up from 143.1 GiB/s.

In conjunction with Optane persistent memory, Xeon Cascade Lake has 4.5TB overall memory capacity. Ice Lake increases this to 6TB, using gen 2 Optane with sequential read bandwidth of 8.10GB/sec and 3.15GB/sec for write bandwidth. The first generation Optane PMem series runs up to 6.8GB/sec read and c2.3GB/sec writes.

Ice Lake and Sunny Cove

Intel is to introduce Sunny Cove , a new core microarchitecture, for Ice Lake. This is designed for Intel's 10nm+ technology and provides about 18 per cent more instructions per clock (IPC) than its predecessor in the Xeon Skylake chips. Things that make Sunny Cove chips faster include a 1.5x large level 1 cache, 2x larger Level 2 cache and elements such as higher load-store bandwidth and lower effective access latencies.

Our sister publication The Next Platform dives deep into Sunny Cove in this article: " The Ticking And Ticking of Intel's "Ice Lake" Xeon SP ".

[Jun 08, 2021] Intel Teases 32 Core Ice Lake-SP Xeon CPU Beating A 64 Core AMD EPYC Rome CPU

May 24, 2021 | wccftech.com

As for the performance benchmarks versus AMD's 64 Core EPYC 7742 CPU, Intel claims that its 32 core Ice Lake-SP Xeon CPU can deliver up to 30% faster performance in key life sciences and FSI workloads.

The performance was measured within NAMD STMV, Monet Carlo, and LAMMPS.

The Intel Xeon Ice Lake-SP CPU was configured with 32 cores and 64 cores per socket. The actual run used two Ice Lake-SP Xeon CPUs for a total of 64 cores and 128 threads versus two AMD EPYC 7742 Rome CPUs with a total of 128 cores and 256 threads.

[Nov 07, 2018] Intel Debuts New Xeon Cascade Lake Advanced Performance Silicon by Sean Michael Kerner ( Send Email )

Notable quotes:
"... Each Xeon E-2100 can support up to 128GB of DDR4 memory running at 2666MHz. Intel is also boosting I/O capacity for its entry-level chip, with up to 40 lance of PCI Express 3.0 support for the Xeon E-2100. ..."
"... Sean Michael Kerner is a senior editor at ServerWatch and InternetNews.com. Follow him on Twitter @TechJournalist. ..."
Nov 05, 2018 | www.serverwatch.com

Intel announced its new Cascade Lake advanced performance and Xeon E-2100 processors on Nov. 5, providing new options for organizations to improve performance for both high-end and entry-level servers.

The Cascade Lake advanced performance silicon is a multi-chip platform that will include up to 48 cores on each CPU and will support 12 DDR4 memory channels for each socket. The Cascade Lake advanced performance chips are being targeted for deployment in 2-socket server systems.

Intel is taking direct aim at AMD's EPYC 7601 server chips with the new Cascade Lake advanced platform, claiming that it is up to 3.4 times faster on the Linpack benchmark. Intel also noted the Cascade Lake advanced platform will be up to 1.21 times faster than its currently shipping Xeon Scalable 8180 processor.

The Cascade Lake advanced platform is set for availability in the first half of 2019.

Xeon E-2100

The new Xeon E-2100 is being positioned by Intel as an entry-level server CPU. The Xeon E-2100 is available in configurations of up to 6 cores and clock speeds of 4.7GHz with Intel's Turbo Boost Technology 2.0.

NVMe and NVME over Fabrics - The Future of Primary Enterprise Storage

Each Xeon E-2100 can support up to 128GB of DDR4 memory running at 2666MHz. Intel is also boosting I/O capacity for its entry-level chip, with up to 40 lance of PCI Express 3.0 support for the Xeon E-2100. The Xeon E-2100 benefits from Intel SGX Secure Enclave technology, which provides an isolated area in the processors for protecting and securing sensitive data.

The Intel Xeon E-2100 processor for entry-level servers is generally available as of Nov. 5.

"We remain highly focused on delivering a wide range of workload-optimized solutions that best meet our customers' system requirements. The addition of Cascade Lake advanced performance CPUs and Xeon E-2100 processors to our Intel Xeon processor lineup once again demonstrates our commitment to delivering performance-optimized solutions to a wide range of customers," Lisa Spelman, Intel vice president and general manager of Intel Xeon products and data center marketing, wrote in a statement.

Sean Michael Kerner is a senior editor at ServerWatch and InternetNews.com. Follow him on Twitter @TechJournalist.

[May 31, 2017] Intels 18-core Core i9 starts a bloody battle for enthusiast PCs by Mark Hachman

Looks like Intel revamped enterprise E series CPUs for PC. Those support 2.4GHz memory not 2.0GHz like Pc variant
Notable quotes:
"... If there's a catch, it's that all of the new 165W, 140W, and 112W chips are designed around the new Socket R4. This 2,066-pin LGA socket is compatible with just one Intel chipset, the new X299, though many X299 motherboards are already being announced. ..."
"... Core i7-7740X (4.3GHz), 4-core/8-thread, $339 ..."
"... The X299 supports faster DDR4-2066 memory, though it's not clear how much. Intel also tweaked its cache hierarchy, an in-the-weeds adjustment that apparently reduces the overall size of the cache, in favor of putting more near the individual processors. Intel says its new cache shows a higher "hit" rate, which means Intel was probably able to cut the size of the chip but maintain its cache performance. ..."
www.legalmatch.com

Mark Hachman Senior Editor, PCWorld |
May 30, 2017 12:01 AM PT

...The Core i9 Extreme Edition i9-7980XE, what Intel calls the first teraflop desktop PC processor ever, will be priced at (gulp!) $1,999 when it ships later this year. In a slightly lower tier will be the meat of the Core i9 family: Core i9 X-series chips in 16-core, 14-core, 12-core, and 10-core versions, with prices climbing from $999 to $1,699. All of these new Skylake-based parts will offer improvements over their older Broadwell-E counterparts: 15 percent faster in single-threaded apps and 10 percent faster in multithreaded tasks, Intel says.

If these Core i9 X-series chips-code-named "Basin Falls"-are too rich for your blood, Intel also introduced three new Core i7 X-series chips, priced from $339 to $599, and a $242 quad-core Core i5. All of the new chips are due "in the coming weeks," Intel said.

Most of the Core i9 chips will incorporate what Intel calls an updated Intel Turbo Boost Max Technology 3.0, a feature where the chip identifies not just one, but two cores as the "best" cores, and makes them available to be dynamically overclocked to higher speeds when needed. They'll be Optane-ready, too, with over 130 Optane-ready motherboards waiting in the wings, Intel said.

If there's a catch, it's that all of the new 165W, 140W, and 112W chips are designed around the new Socket R4. This 2,066-pin LGA socket is compatible with just one Intel chipset, the new X299, though many X299 motherboards are already being announced.

The prices and core/thread counts are as follows:

Core i9-7980XE: 18-core/36-thread, $1,999

Core i9-7960X: 16-core/32-thread, $1,699

Core i9-7940X: 14-core/28-thread, $1,399

Core i9-7920X: 12-core/24-threads, $1,199

Core i9-7900X (3.3GHz): 10-core/20-thread, $999

For enthusiasts with tighter budgets, Intel will also sell three new Core i7 X-series chips:

Core i7 7820X (3.6GHZ), 8-core/16-thread, $599

Core i7-7800X (3.5GHz), 6-core/12-thread, $389

Core i7-7740X (4.3GHz), 4-core/8-thread, $339

All of the new chips are based upon what Intel calls "Skylake-X," except the i7-7740X, which is designed around the Kaby Lake core.

Intel recommends liquid cooling for its Core i9 parts.

The TS13X uses propylene glycol to pump the heat to a 73.84-CFM fan that generates between 21 and 35 dBA, spinning between 800- and 2,200rpm. The TS13X, priced at between $85 to $100, will ship separately, Intel executives said.

Otherwise, Intel will maintain support for per-core overclocking and per-core voltage adjustments, using its Intel Extreme Tuning Utility (XTU). New controllable features include AVX 512 ratio offsets, trim voltage control of the memory control, and PEG/DMI overclocking.

Intel will also offer its "performance tuning protection plan," a sort of insurance policy for overclockers. The company will let you fry your chip once, just once, and get a single replacement. After that, you're on your own.

The X299 supports faster DDR4-2066 memory, though it's not clear how much. Intel also tweaked its cache hierarchy, an in-the-weeds adjustment that apparently reduces the overall size of the cache, in favor of putting more near the individual processors. Intel says its new cache shows a higher "hit" rate, which means Intel was probably able to cut the size of the chip but maintain its cache performance.

[Feb 10, 2016] An end to scaling: Intel's next-generation chips will sacrifice speed to reduce power

JustAnObserver

Re: An end to scaling: Intel's next-generation chips will sacrifice speed to reduce power

The famous Moore's law actually stated that the number of logic gates on a chip would double every 18 months. This is still, largely, happening as the process geometries go down

40nm->28nm->20nm->14nm->Who knows ?

Since the increase in capacity was due to the shrinking transistor size it had, for a long time, the beneficial the side effect of increasing the possible clock speeds. This side effect has become less useful since about the 40nm silicon generation since, roughly speaking, static power has come to dominate the current consumption i.e. the power used even when the clock is taken down to 0. And this problem has been getting worse as the processes continue to shrink.

Something has to give and that thing is dynamic power component that comes from switching all those transistors on & off.

[Sep 14, 2015] Intel's 6th gen processors rock – but won't revive PC markets

The Register Forums

Anonymous Coward

I'd be happy to upgrade

For nothing else but the capability to run 3 screens instead of just 2 because Intel had this artificially limited. Why can't they offer 4 screen capability with the newest CPUs?

Even then, my employer won't replace my 4 year old laptop until it's broken, and I have colleagues with 5-6 year old PCs with the same situation. And the new laptop would be a downgrade because every damn manufacturer drank Intel's Kool-Aid and thinks that a business machine must be an ultrabook, meaning a throttled down CPU, shoddy SSD, no ability to add a hard drive for bulk storage and no possibility to upgrade memory other than ordering it upgraded from factory.

While the extra screen would come in handy, I'm not desperate to upgrade.

Anonymous because breaking a laptop and getting a vacation while the new one is being delivered is way too easy...

jglathe

Re: I'd be happy to upgrade

There are workstation laptop options for sale, though. If you get an ultrabook, then yes, you'd better throttle it for the noise of the fan, and you're limited to the two screens. However, one 1TB SSD is not bad and an i7-5600U at 90% clock is noticeably faster and way more silent than my T420s (i7-2640M).

[Sep 20, 2014] Intel Xeon E5-2600 v3 Haswell-E Hits The Server Space By Patrick Kennedy

September 8, 2014 | tomshardware.com
1. Xeon E5-2600 v3 Platform Introduction

[Jul 16, 2014] Intel E5-2600 line of CPUs

Intel® Xeon® Processor E5-2650 v2
(20M Cache, 2.60 GHz)
Launched Q3'13 8 95 W BOX : $1171.00
TRAY: $1166.00
Select Intel® Xeon® Processor E5-2650L v2
(25M Cache, 1.70 GHz)
Launched Q3'13 10 70 W TRAY: $1219.00
Select Intel® Xeon® Processor E5-2660 v2
(25M Cache, 2.20 GHz)
Launched Q3'13 10 95 W BOX : $1393.00
TRAY: $1389.00
Select Intel® Xeon® Processor E5-2667 v2
(25M Cache, 3.30 GHz)
Launched Q3'13 8 130 W TRAY: $2057.00
Select Intel® Xeon® Processor E5-2670 v2
(25M Cache, 2.50 GHz)
Launched Q3'13 10 115 W BOX : $1556.00
TRAY: $1552.00
Select Intel® Xeon® Processor E5-2680 v2
(25M Cache, 2.80 GHz)
Launched Q3'13 10 115 W BOX : $1727.00
TRAY: $1723.00
Select Intel® Xeon® Processor E5-2690 v2
(25M Cache, 3.00 GHz)
Launched Q3'13 10 130 W BOX : $2061.00
TRAY: $2057.00
Select Intel® Xeon® Processor E5-2695 v2
(30M Cache, 2.40 GHz)
Launched Q3'13 12 115 W BOX : $2340.00
TRAY: $2336.00
Select Intel® Xeon® Processor E5-2697 v2
(30M Cache, 2.70 GHz)
Launched Q3'13 12 130 W BOX : $2618.00
TRAY: $2614.00

[Jun 11, 2013] Intel Brings Haswell to Xeon E3 Server Chips

Older E3-1220v2 (Four Core, 3.31 GHz, 8M, 5GT) is used in Dell Precision T1650

Intel on June 4 unveiled the Xeon E3-1200S v3 processor, which is aimed at smaller single-socket systems running general-purpose workloads or used by small businesses, workstations, Xeon-based microservers and such media workloads as online gaming and virtual desktop infrastructures.

[Jun 11, 2013] Intel Xeon E7 V2 Family Will Pack 15 Cores

The E7-8800 V2 chips would work in configurations that feature up to eight sockets and will feature 15 cores per CPU, along with Hyperthreading, resulting in 30 threads per socket. This platform would also be based on the C600 series chipset but would support more memory configurations. Beyond the expected ECC DDR3-1600 memory, the CPUs would also support DDR4-2133/2400/3200 memory.

[Feb 11, 2013] TYAN - 4U Intel Xeon E5-4600 (Sandy Bridge-EP) 4-Socket LGA 2011 Server Barebones

TYAN's Intel Xeon E5-4600 (Sandy Bridge-EP) 4U server barebones are designed for performance and reliability. With support for 4-socket LGA 2011 (Socket R) Sandy Bridge-EP processors which benefits from quad-channel DDR3, 2 QPI links, Hyper-Threading (HT) technology, and Turbo Boost technology, we offer a variety of 4U server barebones featuring cost-efficiency, enhanced performance and the flexibility to meet customers' expectations in computing multiple tasks, utilizing smaller space with higher performance, especially targeting HPC or GPU Computing applications.

[Feb 11, 2013] Intel ships 60-core Xeon Phi processor

November 12, 2012 | Computerworld

IDG News Service - Intel hopes to deliver performance and power-efficiency breakthroughs to servers with the new Xeon Phi family of processors, the first model of which is now shipping to customers, the company said on Monday.

Chips in the Xeon Phi range, also called "Knights Corner," work with server CPUs to speed up scientific, math and graphics tasks. Targeted at servers and supercomputers, the first Phi chips have 60 or more cores, with the fastest chips delivering more than a teraflop of performance per second.

The Phi chips are the stepping stones toward Intel's goal of reaching an exaflop (about 1,000 petaflops) supercomputer by 2018. The first Xeon Phi chips will be used alongside Intel's Xeon E5 server CPUs in a 10-petaflop supercomputer called Stampede that could be active at Texas Advanced Computing Center (TACC) at the University of Texas by early next year.

Boosting computing power is necessary to solve complex scientific and national security issues, said Joe Curley, marketing director of Intel's Technical Computing Group. Applications can be broken down and executed simultaneously over multicore Phi chips within defined power limits, Curley said.

The Phi chips mix x86-compatible general-purpose and vector processors, and are a response to high-end graphics processors such as Tesla from Nvidia. Some of the world's fastest supercomputers today, including the U.S. Department of Energy's Titan supercomputer and the Tianhe-1A system at the National Supercomputer Center in Tianjin, China, combine Nvidia GPUs with x86 CPUs.

The first Knights Corner chip to ship is the Xeon Phi 5110P, which has 60 cores and a clock speed of 1.05GHz. It offers 1,011 gigaflops of peak double-precision performance, 30GB of cache and memory capacity of 6GB. Much like a graphics card, the chip can be plugged into a PCI-Express 2.0 slot, and is cooled by a system fan. Curley said the product is priced competitively with Nvidia's Tesla or AMD's FireStream GPUs, which are used in supercomputers.

Intel will also ship two Phi 3100 series chips in the first half of next year. The chips will offer peak double-precision performance of 1 teraflop per second, and include 28.5GB of cache and memory capacity up to 6GB. The Phi 3100A will come with its own fan, while the 3100T uses the system's fan. Intel did not provide specific pricing or a shipping date for the chips.

Intel also announced the Phi SE10X and SE10P processors with 61 cores and 1,073 gigaflops of computing power. The parts were specifically built for TACC's Stampede supercomputer and will not be released commercially, Curley said.

In addition to TACC, some leading companies and institutions will support Phi chips in servers and supercomputers, Curley said. IBM, Hewlett-Packard, Dell, Asus and Acer are expected to offer Phi chips in products.

[Apr 23, 2012] Intel Ships Third-Generation Core (Ivy Bridge) Processors News & Opinion PCMag.com

0.22 nanometer CPUs are out...

The processors run from the Core i5-3450S to the Core i7-3770K for desktops, and from the Core i7-3612QM to the Core i7-3920XM on mobile platforms. Note that the letter suffixes are important differentiators. There are four part numbers called Core i7-3770, from the low-power i7-3770T to the unlocked and overclockable i7-3770K. A Core i7-3770K would be ideal for a gaming rig, while a Core i7-3770T would suffice for a compact mini PC or an all-in-one desktop.

Fans of compact form factors will be happy to see that the new Ivy Bridge processors will come with an updated version of integrated Intel HD Graphics that is compatible with DirectX 11 (DX11).

[Dec 28, 2011] Intel working to keep the netbook alive with "Cedar Trail" Atom platform

"...reduced power consumption in spite of the faster GPU - 5 W for the 1.6 GHz N2600, 8 W for the 1.86 GHz N2800, compared to 10 W for the 1.66 GHz Pineview N570"

The new chips are the Atom N2600 and N2800, based on the Intel's third-generation Atom architecture, codenamed Cedarview. The Cedar Trail-M platform pairs one of these processors with company's pre-existing NM10 chipset. As with the previous generation Pineview processor, each dual core, four thread chip integrates a GPU. For Cedarwood, the processor is based on a PowerVR design. Cedarview's GPU offers twice the performance of Pineview's. Cedarview adds to this a dedicated media engine for hardware-accelerated decoding of motion video, including support for 1080p H.264.

Cedarview is built on Intel's 32 nm process, compared to the 45 nm process used in Pineview. This allows for reduced power consumption in spite of the faster GPU - 5 W for the 1.6 GHz N2600, 8 W for the 1.86 GHz N2800, compared to 10 W for the 1.66 GHz Pineview N570. The new processors also include more aggressive power-saving features than their predecessors. Intel is targeting system runtimes of up to 10 hours, with standby times measured in weeks. The company also claims that systems using the slower N2600 part will draw so little power that they can be passively cooled-no need for fans.

Desktop-oriented Cedarview parts, D2500 and D2700, started shipping in the third quarter of 2011

[Dec 07, 2011] Intel's mobile Ivy Bridge CPU line-up revealed

VR-Zone.com

What should be pointed out is that all the dual cores now support DDR3 memory speeds of 1600MHz; something that isn't the case for Sandy Bridge based mobile CPUs. It's also interesting to note that all the mobile processors so far have higher max graphics clocks than their desktop equivalents.

Read more: http://vr-zone.com/articles/intel-s-mobile-ivy-bridge-cpu-line-up-revealed/14148.html#ixzz1fu8SM8mS

[Dec 07, 2011] Intel roadmap shows Core i 3000 CPUs inbound for Q2 2012

See also Intel delays Ivy Bridge chips as roadmap is leaked - The Inquirer

Dec 5, 2011 | SlashGear

The fastest part on the chart is the i7-3770K clocking in at 3.5GHz and 3.9GHz on boost with four cores. The slowest part is the i5-3330S with 2.7GHz base and 3.2GHz on boost. There are bunches of quad and dual core parts in between. These chips are said to inherit a modified Sandy Bridge micro-architecture with a bunch of improvements.

[Dec 03, 2011] AMD C-60 Notebook Processor -

This 64 bit CPU with better graphic processor then Atom but almost the same processing speed. Uses in Acer netbooks.
Notebookcheck.net Tech

The processor speed is somewhere between a single core 1.6 GHz Atom N455 and a dual core Atom N550 depending on the benchmark (see below). Therefore, the performance is still in netbook regions and only suited for low demanding tasks.

The power consumption is rated with a TDP of 9 Watt by AMD and therefore a bit higher as the single core Atom CPUs at 1.6 GHz.

[Nov 16, 2011] Intel Core i5-2500 3.3 GHz 6 MB Cache Socket LGA1155

$209 as of Nov 16, 2011. Nice for desktop althouth four cores might be an overkill.
Amazon.com

Product Features

C. Baker (California): Low power consumption, April 22, 2011

Easy to install since it is the retail version with HSF and thermal compound already installed and in the package. With the GPU built in I am pulling little power (50 watts) in my HTPC system with 3 hard drives, a PCIe lan card and an Asus P8H67-M motherboard.

Processor has plenty of power to handle my HTPC needs plus allows the server to handle other tasks at the same time without a hiccup.

Stephen A. Marcy: Good Value and Performance, February 18, 2011

This new "Sandy Bridge" processor is providing excellent performance for a $200.00 CPU (especially cost effective since the GPU is onboard--no graphics card is required). It is installed in a computer with 8GB of RAM used for typical business applications running simultaneously and occasional audio/visual processing. So far, no complaints. Windows 7 (64 bit) boots quickly and CPU utilization overall remains low most of the time even under moderate multitasking load. Some reviews mention the inadequacy of the heatsink/fan included, but mine hums along just fine at about 30 degrees (Celcius).

Be aware that there is a known defect in Intel's supporting chipsets (P67, H67) that will require certain motherboards to be replaced mid-2011 when the updated chipsets become available, so do your research before purchasing. The defect is not in the CPU itself.

A comment for those of you ordering from other suppliers using their free shipping options who are used to receiving the product(s) in the next day or so anyway...I ordered this CPU on 1/17/2011 using Amazon's free shipping option and it was delivered on 1/25/11. (This is not a complaint--I understood the level of service--just a "heads up" to those of you who might presume faster delivery based on experiences with other vendors.)

A. Wiersch (Lantana, TX USA (near Dallas)): One word: EXCELLENT, June 11, 2011

I think this is an EXCELLENT processor. I'm a computer programmer and spend many hours using computers every day, and typically build all my systems so I can choose the parts.

This processor is FAST. VERY FAST.

This processor is, in my opinion, THE BEST BANG FOR THE BUCK (with the exception of the "K" model if you plan to overclock).

This processor is POWER EFFICIENT. My Linux server (which uses this processor) uses only about 46 watts at idle, and that includes 8GB of RAM, 1 Intel SSD, 1 Western Digital 500GB Black HD, 1 network card, and 5 cooling fans (including the one in the power supply and the CPU cooling fan).

This processor is QUAD CORE (but no hyper-threading).

This processor is LOCKED (signified by the absence of "K"). For a little more money, you can get the unlocked processor, which is definitely the one to get if you will or *THINK* you might do overclocking in the future. It's only about $15 more, but could be even less than the locked processor if you find it on sale. Some electronic B&M retailers use the i5-2500K as a "loss leader", so look for that.

You'll need an 1155 socket motherboard to use this processor with an H67, P67, or Z68 chipset.

Not sure what else to say except Intel has a really great product here that really isn't too expensive. I fear for AMD and hope they can come up with something that can compete well.

One downside is the chipset problem if you don't get the Z68... the H67 (for using the internal graphics) and P67 (for overclocking) have limits that can be aggravating depending on what you want to do. The Z68 has full overclocking support for the CPU, memory and integrated graphics.

I purchased the "K" version of this processor (even though I am not overclocking at this point) with an Intel motherboard and Intel network card, to upgrade a Linux server, and so far it is working great.

[Nov 16, 2011] Intel® Core™ i5-2400 Processor (6M Cache, 3.10 GHz)

What is nice is that the number of core and number of thread are identical. Also the price is below $200.

[Nov 16, 2011] SpecCPU results

Difference in SpecCPU results is minimal, while difference in prices is 20% i5-2500 is $209 at Newegg vs best price for i7-2700 $249
Fujitsu CELSIUS W410, Intel Core i3-2100
HTML | CSV | Text | PDF | PS | Config
Yes 2 1 2 1 36.8 38.1
Fujitsu CELSIUS W410, Intel Core i5-2500
HTML | CSV | Text | PDF | PS | Config
Yes 4 1 4 1 42.7 44.5
Fujitsu CELSIUS W410, Intel Core i7-2600
HTML | CSV | Text | PDF | PS | Config
Yes 4 1 4 1 44.6 46.4
Fujitsu CELSIUS W410, Intel Core i5-2400
HTML | CSV | Text | PDF | PS | Config
Yes 4 1 4 1 40.6 42.2

[Nov 12, 2011] PassMark Intel vs AMD CPU Benchmarks - High End

Intel Core i7-2700K @ 3.50GHz

Price and performance details for the Intel Core i7-2700K @ 3.50GHz can be found below. This is made using thousands of PerformanceTest benchmark results and is updated daily.

[Nov 12, 2011] Intel's Unreleased Core i5-2450M Spotted in Dell Notebooks

Softpedia

The new processor has already emerged in the specifications of a series of Dell notebooks, the XPS 14Z, XPS 15 and XPS 17, which according to CPU World are now being marketed in Taiwan.

The new Core i5 chip is destined to take the place of the i5-2430M, and it features slightly improved specs when compared to its predecessor.

Intel has limited the changes to the core frequencies of the processor, which now comes with a base clock of 2.5GHz and a maximum Turbo Boost speed of 3.1GHz, compared to the 2.4GHz and 3GHz frequencies of the CPU is meant to replace.

In addition the the processor clocks, Intel has also increased the maximum clock speed of the integrated graphics core that now works at 1.3GHz.

The rest of the processor's specifications are similar with those of the rest of i5-2400 CPUs, which means that it includes two computing cores, 3MB of last level cache and support for the Hyper-Threading technology as well as for the AVX and AES-NI instruction sets.

The launch date of the Core i5-2450M is not yet known and neither is its recommended price, but most probably this will carry the same $225 (160 Euros) price tag as its predecessor.

The last of Intel's mobile Sandy Bridge processor refreshes came in just three weeks ago when the chip maker released the Pentium B960, Core i3-2350M and Core i5-2430M.

[Nov 12, 2011] Intel Reportedly Delays Core i7-3820 CPU, Sandy Bridge-E Availability Scarce

Softpedia

According to VR-Zone, the latest rumors to reach the publication suggest that Intel has delayed the quad-core Core i7-3820 for the middle of Q1 next year.

As for the Core i7-3930K and 3960X, these will also be available in a very limited amount, the publication citing figures of "tens of thousands," although it can't disclose the exact figures they were told.

The reason behind these availability issues don't have anything to do with production or anything of this sort, but are motivated by the chip maker's plans to soon release a C3 stepping of the CPUs.

Compared to the C2 version used at launch, the new version is expected to bring some slight improvements, but VR-Zone states that the version worth waiting for is actually the D stepping which won't arrive until later next year.

[Jul 20, 2010] Intel Blurs The Lines Between 4 And 6 Cores

"Almost five years ago, Intel ran into a heat wall and decided it had to commoditize its processors and focus on the brand rather than the clock speed. Processors received sequence numbers that were designed as an indicator how fast a CPU runs, what features it provides and how much power it consumes. That number appears to have become irrelevant over time as it is virtually impossible for consumers to decode CPU sequence numbers anymore. The icing on the cake is a new 6-core processor, which can only identified as a 6-core processor studying the spec sheet.

"Do we still care what processor is in our PC? Or do we expect that it is just good enough for whatever we want to do? That may be just the case and only true enthusiasts may still be interested in knowing what runs their apps and games inside their rigs."

The Four Hundred--Bang for the Buck Enterprise i5 Servers Versus the Competition

Published: September 5, 2006

by Timothy Prickett Morgan

If there is a general rule in the server business, it is this: The cost of server scalability rises faster than the increase in scalability. In an ideal world, servers would scale perfectly linearly, and vendors could just keep adding processors, memory, and I/O to boxes to help their customers support ever-larger workloads. Or, because this is 2006, they could support ever-more server consolidation. But, this being the real world, which has some limits of physics, scalability comes at a cost.

In the so-called enterprise-class server space, by which I mean machines that scale from four to maybe 16, 24, or 32 sockets -- the cost of scalability is indeed relatively high, and vendors have to charge a premium for scalable machines regardless of hardware architecture or operating system. It costs more to engineer the hardware and software stack that drives such machines, which in days gone by would have simply been called mainframes or maybe even supercomputers based on the aggregate computing capacity and memory space they can bring to bear on one or multiple problems. Moreover, because there are relatively few vendors of both the high-end components that go into such boxes, very few makers of them, and comparatively few distributors, the entire enterprise-class ecosystem is comprised of companies that need to charge a premium to cover their costs, and customers who are well used to paying such a premium.

Big iron boxes, as we will see in the next installment of this Bang for the Buck series, cost even more because they tackle even larger hardware and software engineering issues.

The good news is that an enterprise-class machine of 2006, thanks to a decade of engineering, can do a lot more work than a similar machine could do a decade ago. Back in 1997, when IBM launched the "Apache" PowerPC servers, putting up to a dozen of these 125 MHz processors into a single processor complex, the top-end machine, the 650-2243, could deliver about 2,340 CPWs of raw computing power. At the time, this was one of the most scalable and powerful machines in the world. This server was also the first machine to bear both the AS/400 and RS/6000 label.

Back in 1999, when IBM was shipping the "Northstar" PowerPC-based AS/400 and RS/6000 servers, the company more than doubled the clock speed of these 64-bit processors to 262 MHz, and doubled the performance of the top-end 12-way box to 4,550 CPWs. At the time, based on the then-current roadmaps IBM had for Power4 and Power5 processors, I projected that in 2004 or so IBM would deliver a 64-core box using Power5 processors running at 2.2 GHz capable of delivering about 107,000 CPWs of performance, or just over 1 million transactions per minute (TPM) on the TPC-C online transaction processing benchmark test. IBM has far exceeded my estimates, and in terms of performance, appears to have exceeded a lot of expectations.

With the i5 570, which packs 16 cores into four boxes that are lashed together NUMA-style using fiber optic cables, IBM can hit 58,500 CPWs with 2.2 GHz Power5+ chips. That should work out to close to 600,000 TPM running i5/OS V5R4 and DB2/400, based on my current estimates. (IBM hasn't run a TPC-C test on the AS/400, iSeries, or i5 line in so long, it is hard to be absolutely certain. But CPW does bear a direct relationship to TPC-C, since CPW is a variant of TPC-C.) With AIX 5.3 and DB2 8.1, IBM has been able to get a p5 570 using the 2.2 GHz Power5+ processors to deliver over 1 million TPM. The 64-core i5 595 using 1.9 GHz Power5 chips can hit about 1.8 million TPM, and the p5 595 using 2.3 GHz Power5+ chips can break 4 million TPM. Basically, IBM can deliver what seven years ago would have been the expected performance of a big iron box in a smaller and cheaper enterprise-class system.

But, that doesn't mean IBM will not charge a premium for that enterprise-class machines. It does, as the salient characteristics table I built for this story shows.

The Metrics of Comparison

The machines in this table have the hardware features shown, including a basic chassis, processors (either single-core or dual-core), memory, two disk drives, and a tape drive. I have tried to keep the configurations across server architectures and operating system platforms as similar as is practical based on the natures of the product lines. I tried to put 2 GB of main memory per processor on the servers with multicore processors. In some cases, the architecture of the processor and the clock speed it runs at seems to be more of a limiting factor, and in those cases, there may be only 1 GB per core.

As I have explained before, I am aware that I am showing the estimated or actual (when test results are available) OLTP performance of a given processor complex and comparing the cost of a base configuration to this estimated top-end performance for the machine. In this way, I am trying to isolate the base cost of a server and show its potential performance on the TPC-C online transaction processing benchmark. Yes, the Transaction Processing Performance Council frowns on this sort of thing. Someone has to do like-for-like comparisons, and it is either going to be you or me--and I figure you have better things to do, like read this story after letting me do the work.

Each server has a similar stack of software. I have added an operating system and a relational database management system, and unlike in past years when I did such comparisons, this year I have thrown in virtual machine or logical partitioning hypervisors. I think many people are going to start using these hypervisors in production, and not just at the biggest data centers in the world.

The i5 has had such software embedded for years, and to make it a fair comparison, this functionality should be added to X64 servers as well. On these enterprise-class boxes running Windows and Linux, I added in VMware's top-of-the-line ESX Server 3 with all of the bells and whistles. While Novell's just announced SUSE Linux Enterprise Server 10 has the integrated and free Xen 3 hypervisor from XenSource in it, there are no recent tests on enterprise-class machines running Linux that employ SUSE Linux. Because the architecture of these big boxes is very different from two-socket or four-socket servers, where this is more data about Linux performance, the differences between Red Hat and SUSE are not very large. But on enterprise servers, where there is a lot of work that Red Hat or Novell do with specific partners, performance could differ considerably. Without a lot of data, it is hard to be sure.

I put Windows Server 2003 Enterprise Edition or Datacenter Edition on the Windows boxes, as well as SQL Server 2005 Enterprise Edition. Oracle Enterprise Edition on the Linux and Unix boxes. The Unix boxes running HP-UX use HP's own Virtual Server Environment partitioning, the IBM p5 boxes use the Virtualization Engine hypervisor (also used with the i5), and the Sun Microsystems boxes use Solaris containers. I know that the latter is not as sophisticated as some of the other hypervisors--since containers have a shared Solaris kernel and file system underneath virtual machines--but if you want, you could put VMware ESX Server 3 on the Opteron boxes and run Solaris 10 inside the partitions.

None of the configurations have any hardware or software support costs added in, and where vendors put these in as a base requirement--as IBM does with Software Maintenance on the i5 line--I have stripped these costs out. Pricing is just for system acquisition and basic installation support.

How the i5 570 Measures Up

Compared to the i5 550, computing capacity on a base i5 570 is quite a bit more expensive than on the smaller two-socket i5 550 box. The good news is that if most customers can get by on the even cheaper (in terms of relative bang of the buck) single-socket i5 520, very few customers in the i5 installed base need the i5 550 and even fewer need the i5 570.

How much of a premium am I talking about? The i5 520 Standard Edition machines, which do not have any 5250 green-screen processing capacity, cost between 84 cents and $1 per TPM for the two configurations I profiled several stories ago. The i5 550s, which offered twice the scalability, cost between $1.42 to $1.56 per TPM for the configurations I ginned up. With the four configurations of the i5 570 I priced out--which had 2, 4, 8, and 16 cores activated and running i5/OS Standard Edition--the cost per TPM ranged from $2.16 to $2.56 per TPM. Smaller i5 570 configurations running i5/OS Enterprise Edition cost about 2 to 2.5 times that of Standard Edition machines when their cores were activated to fully support green-screen processing; bigger i5 machines running i5/OS Enterprise Edition cost about 1.5 times of the Standard Edition configurations. For these very large boxes, 5250 capacity was a lot cheaper than on i5 550 Enterprise Edition configurations and was in the same range as i5 520 Enterprise Edition machines. Clearly, IBM is positioning its largest i5 570 boxes as RPG and COBOL application consolidation boxes.

The other thing that is immediately obvious from the table is that enterprise-class Windows, Linux, and Unix boxes are still less expensive than i5 alternatives. But the gap in price/performance is a lot less egregious. In many cases, the enterprise boxes that have been tested by various vendors are as expensive as i5 570 machines, TPM for TPM.

However, the economics in this enterprise-class server space are changing, thanks to the introduction of dual-core processors from Intel and Advanced Micro Devices, and if IBM is not careful, it will very quickly fall behind.

Benchmark test results are not yet widely available on the new "Montecito" dual-core Itanium 9000 processors that were announced in July, and results have similarly not been announced for machines using the dual-core "Tulsa" Xeon MP 7100s. The Montecito chips offer about twice the performance of the single-core "Madison" 9 MB chips shown in some configurations, and the Tulsa chips offer between 60 and 70 percent more oomph than the dual-core "Paxville" Xeon MPs that are in some of the servers shown. If vendors hold prices relatively steady on their Xeon MP and Itanium boxes, customers will see a very big jump in price/performance.

HP put out some performance data on its rx6600 servers, which use the Montecito Itaniums and which are due to be launched this week. Based on HP-UX and Windows benchmarks on the rx6600, which uses its xz2 "Titan" chipset, HP is going to be able to offer very aggressively priced Windows and Unix boxes. These may not be able to scale quite as far as the i5 570 and p5 570, because they can only have a maximum of eight Montecito cores in the box. But at around 345,000 TPM for a four-socket server, this is all the box many customers will need for many years. With the Windows stack, the rx6600 can span from just under 140,000 TPM to 345,000 TPM (that's with 2 to 8 cores) at a cost of between 58 and 62 cents per TPM. Customers who want a more scalable box can choose the rx7640, which will scale to 16 cores using Montecito, or the rx8640, which will scale to 32 cores. The indications are that these machines will come in at around $1 per TPM.

Ditto for the Tulsa Xeon MP servers. Unisys and IBM have done tests on their Paxville Xeon MP servers--the ES7000/one and System x 3950, respectively. Using the 3 GHz dual-core Paxville Xeon MPs, the ES7000/one machine delivered nearly 750,000 TPM running Windows Server 2003 Datacenter Edition and SQL Server 2005 at a cost of $1.27 per TPM for a base box with 32 cores (16 processors) and 32 GB of main memory. IBM only tested the x3950 using up to eight Paxville Xeon MP chips (16 cores), but I reckon that a 32-core box could do about 650,000 TPM at a cost of around 80 cents per TPM. When you slap Tulsa chips in that box, you boost performance by around 65 percent or so, and the Tulsa chips are about half as expensive as their Paxville predecessors. Assuming all other costs remain about the same--and there is no reason why they shouldn't--then that extra performance translates almost directly into bang for the buck. That should put the top-end ES7000/one machine with 32 Tulsa cores at around 75 cents per TPM and the IBM x3950 at around 50 cents per TPM.

Like I said last week, IBM has to really think about using the Power5+ quad-core modules (QCMs) in the i5 line to make sure the i5 line keeps riding down the price/performance curve.

The interesting thing to note is that enterprise-class machines running Linux and Oracle 10g Enterprise Edition are not all that inexpensive. Microsoft is pricing its software stack very aggressively, and Oracle basically needs to charge half of list price to compete.

On the Unix front, HP's rx6600 boxes are, as I explained above, very aggressively priced, and in some cases, they give the p5 570 a serious run for the money--and win it. This is possible because HP is moving to dual-core Itanium chips and packing a lot of wallop into a four-socket box. A similarly configured four-socket p5 570 has the same cost per TPM and does 60 percent more work. And, if you need to, you can add two more p5 570 chassis and double the performance again to over 1 million TPM.

While Sun has foolishly not provided TPC-C benchmark test results for any of its "Galaxy" Opteron-based servers, the estimates that I have done lead me to believe that if it did, it would be able to demonstrate price/performance on par with the HP rx6600 and IBM p5 570--very roughly, around $1 per TPM. Based on my guesses, I think the 16-core Sun Fire X4600 can scale from about 50,000 TPM with two cores (a single dual-core Opteron 885 running at 2.6 GHz) to about 350,000 TPM with eight of these processors. The Sun Fire E4900 server can have up to a dozen of Sun's dual-core UltraSparc-IV+ chips in it, and the E6900 can have two dozen. The E6900 has a bit more scalability than the p5 570, and considerably more than the X4600 Galaxy box. But according to my analysis of the E6900's pricing and my own performance estimates, the E6900 costs twice as much per unit of work than the HP Itanium, Sun Galaxy, or IBM p5 boxes.

You can sure tell which is the legacy Sun box, eh? And you know that customers who have applications that have been tightly written to the Sparc/Solaris architecture are now wishing maybe they hadn't done that. Still, Sun has come a long way to close the price/performance gap with its UltraSparc-IV+ chips, and the improvements Sun has made have helped it retain its Sparc customer base (after losing a lot of it to Lintel boxes in the past five years). Moreover, on many workloads, the Power5 and Itanium chips do not do any more work than Sun's homegrown UltraSparc-IV+ chips, and in that case, there is no penalty at all.

IBM developerWorks Blogs Benchmarking and systems performance - hosted by Elisabeth Stahl

IBM hurls confident 'to come' ship date for late Power6 The Register

A disturbing presentation slide from Big Blau has shifted the delivery date of IBM's Power6 chip from mid-2007 to "to come," seeming to confirm that suspicions of Power6 issues are correct.

Over the past few weeks, IBM has been holding technology discussions in Germany, disclosing information on its Power-based server line. The Register happened upon the slide deck for one such presentation and noticed a major shift in the Power roadmap. IBM's Power5+ processor has been extended out through the duration of 2007, while Power6 has been shoved into the "to come" era.

A spokesman denied any delays. "IBM is on track to launch POWER6-based servers in mid-year 2007," he said.

Dr. Dobb's Dual-Core CPU Buyer's Guide September 5, 2006

By Alexander Wolfe

(Faster Single-Cores, continued)

AMD Athlon 64 3800+, 3500+, 3200+: Note that these models aren't Athlon 64 X2s -- "X2" denotes dual-core. These are plain-old single-core Athlon 64 designs, which were among the first desktop processors to implement AMD's groundbreaking 64-bit architecture.

The single-core Athlon 64s make a bit more sense price-wise than some of their Pentium 4 6XX competition. Perhaps that's because the scrappy semiconductor competitor fields fewer processors overall than Intel. A 2.0-GHz Athlon 64 3200+ lists for only $81. The top-of-the-line 2.4-GHz 3800+ sells for $120.

Low-End Single-Cores

Intel Celeron D 356, 355, 352, 351, 350, 346, 345, 341, 340, 331, 326: Here's a nomenclature no-no to remember: The "D" after "Celeron" does not put these parts in the same class as the Pentium D. These Celerons are low-end, single-core processors -- not dual-core devices. Note also that this family is divided up between Intel's Socket 775 and its rather aged Intel 478 socket. If you have the right motherboard, it doesn't much matter which one you get, since both types use a rather slow 533-MHz front-side bus.

The Celeron D 340, 345, and 350 use the 478 socket. The three CPUs also don't support Intel's 64-bit EM64T instruction set extensions. The Celeron D 326, 331, 341, 346, 351, 352, 355, and 356 are all socket 775 and do support EM64T.

If you're insistent on going single-core, and if your computing needs really are limited to everyday tasks, probably nothing fits the bill better than this family. Along with the aforementioned 2.53-GHz Celeron D 326 going for a scant $31, you can get a 2.93-GHz 340 for $40 or a 3.2-Ghz 350 for around $50. My suggestion, though, is to stick with the two most modern members of the family: the 3.2-GHz 352 and 3.33-GHz 356. Those two are the only Celeron Ds that have the added advantage of being 65-nm parts; the others use the older 90-nm process. They can be purchased for $69 and $74, respectively.

AMD Sempron 3600+, 3500+, 3400+, 3200+, 3000+: What is it with low-end processor names? "Celeron" sounds too close to "celery" for my taste. And "Sempron," which seems to have been chosen to connote the Marine slogan semper fi (always faithful), instead makes me think "simp," for simple. Which, like their Celeron competitors, they essentially are.

Like the Celerons, the Semprons come in versions spread among two different sockets: AMD's older 754 or its new, DDR2-supporting AM2. The Semprons also boast a faster system bus and use less power than the Celerons; however, most of the Semprons cost slightly more. The least expensive is the 3000+ at $61. (That chip runs at 1.8 GHz in its Socket 754 version, 1.6 GHz in AM2.) The family tops out with the $110, 2.0-GHz Sempron 3600+.

[May 25, 2010] Intel slims down Cores for thinner laptops

May 25, 2010 | Linux Today

" Intel announced six new 32nm processors intended for ultra-thin laptops. Topped by the Core i7-660UM, with a clock speed of 1.33GHz and "TurboBoost" frequency of 2.4GHz, the CPUs will be available next month in devices from Acer, Asus, Gateway, and Lenovo, the chipmaker says.

"Intel's new 32nm CPUs are part of the company's CULV (consumer ultra low voltage) line, intended for thin-and-light laptops that cost more than netbooks, but typically offer extended battery life and better performance. The new chips are intended to replace parts such as the Core 2 Duo-based SU7300, which has a 1.3GHz clock speed and a 10 Watt TDP.

"Promised in January when Intel unleashed a bevy of new Core CPUs, the new CULV versions do not include any major technological surprises. They once again use the chipmaker's 32nm process, which includes second-generation high-k metal gate transistors, and the i5/i7 parts feature Turbo Boost technology, allowing clock speed to be bumped up temporarily in response to workload."

[Aug 29, 2006] Server vendors say they will use Intel 'Tulsa' chips

The introduction of Intel's Core 2 Duo and Xeon 5100 processors may have rendered Netburst obsolete, but the architecture isn't ready to go down just yet. Like a cartoon villain throwing on his giant robot suit as a last resort to defeat the protagonists, Netburst has strapped on a whole lot of extra cache and re-materialized in the form of new Xeon 7100-series "Tulsa" chips. The new processors clock up to 3.4GHz, pack up to 16MB of cache, and from what Intel told us, draw up to 150W of power. The complete "Tulsa" lineup launching today is as follows:

Speed FSB Price
Xeon 7140M 3.40GHz 16MB 800MHz $1980
Xeon 7140N 3.33GHz 16MB 667MHz
Xeon 7130M 3.20GHz 8MB 800MHz $1391
Xeon 7130N 3.16GHz 8MB 667MHz
Xeon 7120M 3.00GHz 4MB 800MHz $1177
Xeon 7120N 3.00GHz 4MB 667MHz
Xeon 7110M 2.60GHz 4MB 800MHz $

Electrical power aside, Intel says the new chips bring huge processing power gains over their single-core predecessors-up to twice the performance and three times the performance per watt, to be exact. Of course, the company avoids direct comparison with the new Xeon 5100 chips, so right now it's anyone's guess how much all that cache really helps Netburst. Nevertheless, Intel expects 40 system manufacturers worldwide to release servers based on the new chips. Dell, for one, is already offering the new processors in its four-way PowerEdge 6800 server.

(IDG News Service) -- Dozens of server manufacturers today announced plans to incorporate Intel Corp.'s new dual-core 64-bit Xeon 7100 processor, dubbed Tulsa, into upcoming servers.

Hewlett-Packard Co., Dell Inc. and Unisys Corp. are among 40 system manufacturers designing Tulsa into their new server offerings.

Tulsa is Intel's response to Advanced Micro Devices Inc.'s Opteron 800 series processors, the most recent challengers to Intel's dominance in the server processor market.

HP announced that Tulsa will go into upgraded versions of its x86 platform ProLiant 500 series servers. The ProLiant DL580 rack-mounted server carries a list price of $6,649, while the ML570 G4 tower server starts at $5,799. HP said that offering ProLiants with the Tulsa chip will strengthen its market-share lead in the x86 processor segment, which stood at 34.5% in the second quarter, according to IDC research.

Dell is offering Tulsa in new versions of its PowerEdge 6800 and 6850 servers, starting at a list price of $6,900. Dell reports performance gains of up to 123% and performance-per-watt gains of as much as 129%, compared with running Intel's Paxville-MP chip line, the predecessor to Tulsa.

Tulsa, based on a 65-nanometer chip design, is built to run on servers with four or more processors, Intel said. Tulsa's cores run 13% faster than Paxville while using 20% to 40% fewer watts, the company said. Intel builds each Tulsa chip by combining two 3.4-GHz Pentium 4 cores on a single die and will deliver both 150-watt and 95-watt versions. Tulsa supports four threads per processor and has a 16MB cache, compared with a 4MB cache in Intel's Woodcrest processor, another member of the Xeon family introduced in June.

Intel will use the Tulsa chip to fill a price and performance gap in its line between the Woodcrest Xeon 5100 and the Montecito Dual-Core Itanium 2, said Shane Rau, an analyst at IDC.

"With Itanium, users are looking primarily at performance, and with Woodcrest they are looking at price. Something like [Tulsa] will go right down the middle," he said.

Intel is selling the Tulsa dual-core Xeon 7100 series chips in eight models, including two with caches of 16MB, two with 8MB caches, and the rest with 4MB.

Intel charges $1,980 for either the 3.40GHz Xeon 7140M or 3.33GHz Xeon 7140N; $1,391 for either the 3.20GHz Xeon 7130M or 3.16GHz Xeon 7130N; $1,177 for either the 3.00GHz Xeon 7120M or 3.00GHz Xeon 7120N; and $856 for either the 2.60GHz Xeon 7110M or 2.50GHz Xeon 7110N.

Ben Ames of the IDG News Service in Boston contributed to this report.

[Jul 01, 2006] [Phoronix] Intel Core Duo T2400 + Linux

Intel Core Duo T2400 + Linux Author: Michael Larabel
Topic: Preview
Page: 1 of 8
Published: July 01, 2006

While Intel's Core 2 Duo is being readied for market with the introduction of Conroe, the Intel Core Duo has been a terrific performer and continues to be with its competitive feature set. However, do these same advantages come when computing under Linux? The processor we will be using to examine just that is the Intel Core Duo T2400, which has a maximum operating frequency of 1.83GHz, 2MB of L2 cache, 667MHz FSB, 65nm process, and maximum power consumption of 31 Watts. Not only have we taken the Intel Core Duo T2400 for a spin, but for a comparison as well we have provided numbers from the Intel Pentium M 750, which comes similarly clocked at 1.83GHz. Housing the Intel T2400 was a Lenovo ThinkPad T60, which had also packed in an ATI Radeon Mobility X1400, 1GB of DDR2, 80GB SATA drive, and 15.0" FlexView screen. The Pentium M 750 was used with a Lenovo ThinkPad R52. Though the specifications are not identical, they should certainly prove to be a viable comparison. Some of the Core Duo benefits include Intel Smart Cache, Digital Media Boost, Dynamic Power Coordination with Dynamic Bus Parking, and Enhanced SpeedStep Technology.

Hardware Components
Processor: Intel Core Duo T2400 (1.83GHz)
Motherboard: Lenovo ThinkPad T60 2613EJU
Memory: 2 x 512MB DDR2
Graphics Card: ATI Radeon Mobility X1400 128MB
Hard Drives: 80GB SATA 5400RPM
Software Components
Operating System: Fedora Core 5
Linux Kernel: 2.6.17-1.2139_FC5 SMP (i686)
GCC: 4.1.0
Graphics Driver: ATI fglrx 8.26.18
X.Org: 7.0.0

Hardware Components
Processor: Intel Pentium M 750 (1.83GHz)
Motherboard: Lenovo ThinkPad R52 18494WU
Memory: 2 x 1GB OCZ DDR2-533
Graphics Card: ATI Radeon Mobility X300 64MB
Hard Drives: 100GB Toshiba 16MB 5400RPM IDE
Software Components
Operating System: Fedora Core 5
Linux Kernel: 2.6.17-1.2139_FC5 (i686)
GCC: 4.1.0
Graphics Driver: ATI fglrx 8.26.18
X.Org: 7.0.0

Both the Lenovo ThinkPad R52 and T60 work great under Fedora Core 5 with the 2.6.17 kernel. The only options not working out of the box with the Lenovo T60 was the Wifi and the integrated audio, which work after some tweaking. The ATI fglrx 8.26.18 drivers also had no problems with the Mobility X1400. The benchmarks used for demonstrating the real-world system performance was Enemy Territory, Doom 3, Quake 4, Gzip compression, LAME compilation, LAME encoding, BlueSail Software Opstone, FreeBench, and RAMspeed. We ran these benchmarks individually, as well as in the later part of this article had paired a few of these tests together to better represent multi-tasking.

While there were a few areas where the Core Duo T2400 had fallen to the Pentium M 750 in the single-threaded benchmarks, overall, Intel's Core Duo T2400 processor was a terrific performer, and we can only wait to share with what the Core 2 Duo will hold in store for computing performance. The Intel Core Duo T2400 was able to shine in all of the benchmarks where multi-tasking was taking place whether it be encoding during gaming or compiling while compressing files. In many of the CPU-centric benchmarks, there was a definitive advantage with the dual-core processor, while in some of the single-threaded benchmarks the Pentium M had managed to take a minimal lead. Of course, not all of the system hardware components were identical, so there was an increased standard deviation. With that, outside of the CPU performance, it was also interesting to see the Linux fglrx performance delta between the Mobility Radeon X300 and X1400. No power consumption or Enhanced Intel SpeedStep Technology comments to share today, as those and more will be saved for another day.

[Nov 12, 2002] Interview Intel president embraces Linux -- kind of By James Niccolai

November 14, 2002

As president and chief operating officer of Intel, Paul Otellini oversees the day-to-day running of the largest manufacturer of PC chips in the world. Alongside Microsoft, his company rode two decades of PC industry growth to become arguably the most successful company in Silicon Valley.

But with the economy in a spin and PC sales in a slump, Intel, like many other IT vendors, is having to seek new areas to ensure its continued growth. Armed with its Itanium chip, it may have found an answer in the market for high-end servers, where it hopes to undercut rivals such as Sun Microsystems and IBM.

This time it has two software partners at its side: Microsoft, its longtime ally, and Linux, viewed by many as one of the most tangible threats to Microsoft's Windows operating system.

Otellini was a keynote speaker at the OracleWorld conference here this week, where Oracle is pushing clusters of Intel-based servers running Linux as the most cost-effective way to run its database. He talked to IDG News Service about a potentially bright future for the open-source OS, but seemed wary of offending Intel's longtime partner, Microsoft, in the process.

IDGNS: We're hearing a lot from Oracle this week about the advantages of running its software on Intel-based servers running Linux and the potential cost savings there for customers. What's your prognosis for Linux over the next year, and what sort of an opportunity does it present for Intel?

Otellini: Oracle is working with a variety of operating systems. They've demonstrated HP-UX results we saw here today, Linux, and Windows as well. We work with Oracle principally because they are multi-OS, that's one of the advantages.

When coming from Solaris or HP-UX or even AIX and going to anything but Linux, you have a long porting activity. Porting to Linux is very quick, it's a matter of days. So what we're finding is, companies with a lot of homegrown applications, like Wall Street, airlines, the auto industry, insurance, financial services, where they do a lot of in-house application development and they've done that for years in a Unix environment, it's a very logical choice to pick Intel and Linux to get a quick time to market and to lower their costs.

The other side of that is, places where they have a lot of shrink-wrapped software, like Intel, to run their enterprise, and you come at it from the Windows environment growing up and you deploy those applications.

So at Intel we have a mixed environment today. We use Linux for engineering servers and workstations, but Windows everywhere else. If I extrapolate our own experience, I don't see one operating system gaining momentum against the other.

IDGNS: In terms of a business opportunity, how much do you see Linux driving your sales in the year ahead?

Otellini: As I said earlier, there's a lot of displacement of proprietary RISC, and for us that's incremental sales. Someone who was on Sun can move to Intel, or someone who was on HP-UX can move to HP with Itanium. Those are all incremental sales for us, so that's good. I have no way of quantifying how big it is, though.

IDGNS: Would you say that you're platform agnostic, that Linux and Windows offer you equal opportunities for growth?

Otellini: I'm not going to go that far. We support multiple platforms. Our principal market is Windows-based, and Microsoft is our key partner.

IDGNS: You must be paying close attention to the development of the Linux kernel, to be sure it evolves in a way that makes the operating system suitable for running enterprise applications and databases. To what extent is Intel involved in that development?

Otellini: We do tools for all the operating systems that run on Intel. We are supporters of an organization called OSDL, the Open Source Development Lab, along with HP and IBM and Dell and a bunch of others.

IDGNS: You support them with financial investments?

Otellini: Yes. It's also some collaborative engineering. It's trying to get capabilities put into the kernel that are required to take advantage of our server architectures.

IDGNS: Do you have developers inside of Intel doing work on the kernel and suggesting changes to Linus Torvalds [the creator of Linux, who oversees its development]?

Otellini: Yes, but I don't want to overplay the relative weighting. The bulk of our software engineering work is on Windows, internally and externally.

IDGNS: I'm not trying to get you to say you prefer Linux over Windows.

Otellini: You're coming close! (laughter)

IDGNS: We've heard a lot this week about customers running Oracle's software on Intel-based servers. What's the most popular Intel hardware for that?

Otellini: It depends. The scale-out stuff [grouping servers together to achieve more computing power] is almost all Xeon DP [dual-processor] and MP [multiprocessor], the scale-up stuff [using multiple processors in a single system to boost computing power] is a mixture of that and Itanium. I would expect over time to have more Itanium than Xeon in scale up, and I'd also expect as we bring the costs down to have Itanium in scale out.

As long as 32-bit applications and operating systems predominate, the Xeon family will be by far the highest volume. Over time our 64-bit architecture will move up, and at some point in time, just as we went from 16-bit to 32-bit, so 64-bit will become the predominant architecture. But I don't know when that crossover will be.

IDGNS: So when does Itanium take hold for scaling out?

Otellini: I think next year.

IDGNS: Besides moving to a 64-bit architecture, which gives you greater memory addressability, what are some of the other things you can do in hardware to boost the performance of databases and enterprise applications?

Otellini: More cache. We also build in hardware transparency features where, if there's a hardware fault, it becomes [apparent] to the operating systems instantly, as opposed to having to go through the applications and notify memory or something else.

IDGNS: Anything else? You have a lot of transistors on your chips these days, can you make use of some of those?

Otellini: We can do multiple cores. Mike Fister, who runs our server group, talked about that at our developers' forum a couple of months ago. We're looking at other generations of Itanium that would implement multiple cores.

IDGNS: The hyperthreading technology you have now gives you a "virtual" dual-core processor. What conditions need to come about in order to make a true dual-core processor a viable product for you?

Otellini: As you said, hyperthreading is the first step along the way because it's essentially dual-processing for free. And as more and more of the operating systems are threaded to take advantage of that, that sets the precondition for multiple cores to be useful.

IDGNS: Could you do a dual-core processor on the 0.13-micron manufacturing process you use today?

Otellini: You'd probably have to move to the next, but then you're making trade-offs in terms of cache size. Right now there's more performance from the incremental megabyte of cache than there is in shrinking the cache substantially and adding another core. When the transistor counts get to typically about 90 nanometer [0.09 micron], we get to where we can start thinking about this in a cost-effective fashion.

IDGNS: So would it be overstating it to say we should expect to see you do a dual-core processor when you hit 90 nanometer?

Otellini: You'd be overstating it.

IDGNS: What are some of the desktop applications on the immediate horizon that will drive the need for faster chips? It seems like every year you add another gigahertz. Last year Intel told us 2GHz is fantastic for doing multimedia computing, so what do we need 3GHz for?

Otellini: Have you ever seen the program Stitcher? It stitches together two or three photographs into a panoramic view. That brings a 2GHz to its knees. It just hangs. 3GHz is not super-speed but it's substantially faster. On the business side I've talked about running background tasks for security, and data-mining and so forth. That stuff just sucks compute power.

IDGNS: So you're confident that demand will keep pace with the performance you offer?

Otellini: Yes. In general the hardware side of the business tends to move a little bit faster than the software, which I think is the natural order of things. That way you have a target to write to.

IDGNS: Do you see a need for 64-bit computing on the desktop?

Otellini: Not any time soon. We use that in workstations; there are a number of server-type applications that take advantage of the memory addressability. But there are very few desktop client applications that take advantage of even the full 32 bits today. Even the Pentium 4 has a 40-bit architecture that very few software developers use. Why? Because you don't have the need for memory addressability, and memory subsystems to populate it are terribly expensive.

If you plot the memory requirements of typical applications in terms of their growth, and plot that against the cost of memory subsystems coming down over time, you don't get a reasonable intersect point until very late this decade.

IDGNS: So should I read into that that Intel won't have a 64-bit processor for the desktop until very late this decade?

Otellini: You shouldn't read anything into that, I'm just commenting on the market.

IDGNS: You've traditionally applied your most advanced manufacturing technologies to chips used in notebook computers. Will that stay true as you move deeper into handheld computers and cell phones?

Otellini: It's a little bit different there. That wireless Internet-on-a-chip I talked about [during a keynote presentation here], by the time it comes out we'll be at 90 nanometer and it won't be on our most advanced technology, it will be on 0.13. But there's enough transistor budget there that we're able to deal with it. Basically it's all-digital, we didn't need the mixed-signal capabilities so we're able to put it all on one chip.

IDGNS: So when 90 nanometer comes along, Banias [a new processor design for notebooks due next year] will be the first thing to be manufactured on it?

Otellini: A version of Banias will be one of the first chips.

IDGNS: Apart from the Itanium chip family being a success, could you offer a couple of IT predictions for 2003?

Otellini: The biggest thing I'd suggest you look at is wireless Web services. Everyone is aiming at Web services, that's kind of a no-brainer. But as you probe, you find out that most people are aiming at simply interconnecting their servers. That's good, it's a necessary precondition, but getting access to that data in an increasingly wireless fashion is essential. And if you don't develop those Web services applications to take advantage of that now, you just have to rewrite them in a year and a half.

IDGNS: People talked a lot about wireless data services two years ago but it didn't really happen.

Otellini: People talked about it in a different way. They talked about how 3G is going to save the world and we're going to get all these data services and it's going to fix the telecoms industry. I don't think that's what I'm talking about. I'm talking about simply being able to access through the Internet the services you need, even your Schwab [brokerage] account, on your PDA, on your phone. That's different from waiting for the data services model to find a home. This is taking advantage of existing data models.

IDGNS: So maybe in the post-dot com world we're all a little more realistic, a little less ambitious?

Otellini: I think we're more pragmatic, and the business model prevails.


Recommended Links

Google matched content

Softpanorama Recommended

Top articles

Sites

SPEC

Tom's Hardwire Guide



Etc

Society

Groupthink : Two Party System as Polyarchy : Corruption of Regulators : Bureaucracies : Understanding Micromanagers and Control Freaks : Toxic Managers :   Harvard Mafia : Diplomatic Communication : Surviving a Bad Performance Review : Insufficient Retirement Funds as Immanent Problem of Neoliberal Regime : PseudoScience : Who Rules America : Neoliberalism  : The Iron Law of Oligarchy : Libertarian Philosophy

Quotes

War and Peace : Skeptical Finance : John Kenneth Galbraith :Talleyrand : Oscar Wilde : Otto Von Bismarck : Keynes : George Carlin : Skeptics : Propaganda  : SE quotes : Language Design and Programming Quotes : Random IT-related quotesSomerset Maugham : Marcus Aurelius : Kurt Vonnegut : Eric Hoffer : Winston Churchill : Napoleon Bonaparte : Ambrose BierceBernard Shaw : Mark Twain Quotes

Bulletin:

Vol 25, No.12 (December, 2013) Rational Fools vs. Efficient Crooks The efficient markets hypothesis : Political Skeptic Bulletin, 2013 : Unemployment Bulletin, 2010 :  Vol 23, No.10 (October, 2011) An observation about corporate security departments : Slightly Skeptical Euromaydan Chronicles, June 2014 : Greenspan legacy bulletin, 2008 : Vol 25, No.10 (October, 2013) Cryptolocker Trojan (Win32/Crilock.A) : Vol 25, No.08 (August, 2013) Cloud providers as intelligence collection hubs : Financial Humor Bulletin, 2010 : Inequality Bulletin, 2009 : Financial Humor Bulletin, 2008 : Copyleft Problems Bulletin, 2004 : Financial Humor Bulletin, 2011 : Energy Bulletin, 2010 : Malware Protection Bulletin, 2010 : Vol 26, No.1 (January, 2013) Object-Oriented Cult : Political Skeptic Bulletin, 2011 : Vol 23, No.11 (November, 2011) Softpanorama classification of sysadmin horror stories : Vol 25, No.05 (May, 2013) Corporate bullshit as a communication method  : Vol 25, No.06 (June, 2013) A Note on the Relationship of Brooks Law and Conway Law

History:

Fifty glorious years (1950-2000): the triumph of the US computer engineering : Donald Knuth : TAoCP and its Influence of Computer Science : Richard Stallman : Linus Torvalds  : Larry Wall  : John K. Ousterhout : CTSS : Multix OS Unix History : Unix shell history : VI editor : History of pipes concept : Solaris : MS DOSProgramming Languages History : PL/1 : Simula 67 : C : History of GCC developmentScripting Languages : Perl history   : OS History : Mail : DNS : SSH : CPU Instruction Sets : SPARC systems 1987-2006 : Norton Commander : Norton Utilities : Norton Ghost : Frontpage history : Malware Defense History : GNU Screen : OSS early history

Classic books:

The Peter Principle : Parkinson Law : 1984 : The Mythical Man-MonthHow to Solve It by George Polya : The Art of Computer Programming : The Elements of Programming Style : The Unix Hater’s Handbook : The Jargon file : The True Believer : Programming Pearls : The Good Soldier Svejk : The Power Elite

Most popular humor pages:

Manifest of the Softpanorama IT Slacker Society : Ten Commandments of the IT Slackers Society : Computer Humor Collection : BSD Logo Story : The Cuckoo's Egg : IT Slang : C++ Humor : ARE YOU A BBS ADDICT? : The Perl Purity Test : Object oriented programmers of all nations : Financial Humor : Financial Humor Bulletin, 2008 : Financial Humor Bulletin, 2010 : The Most Comprehensive Collection of Editor-related Humor : Programming Language Humor : Goldman Sachs related humor : Greenspan humor : C Humor : Scripting Humor : Real Programmers Humor : Web Humor : GPL-related Humor : OFM Humor : Politically Incorrect Humor : IDS Humor : "Linux Sucks" Humor : Russian Musical Humor : Best Russian Programmer Humor : Microsoft plans to buy Catholic Church : Richard Stallman Related Humor : Admin Humor : Perl-related Humor : Linus Torvalds Related humor : PseudoScience Related Humor : Networking Humor : Shell Humor : Financial Humor Bulletin, 2011 : Financial Humor Bulletin, 2012 : Financial Humor Bulletin, 2013 : Java Humor : Software Engineering Humor : Sun Solaris Related Humor : Education Humor : IBM Humor : Assembler-related Humor : VIM Humor : Computer Viruses Humor : Bright tomorrow is rescheduled to a day after tomorrow : Classic Computer Humor

The Last but not Least Technology is dominated by two types of people: those who understand what they do not manage and those who manage what they do not understand ~Archibald Putt. Ph.D


Copyright © 1996-2021 by Softpanorama Society. www.softpanorama.org was initially created as a service to the (now defunct) UN Sustainable Development Networking Programme (SDNP) without any remuneration. This document is an industrial compilation designed and created exclusively for educational use and is distributed under the Softpanorama Content License. Original materials copyright belong to respective owners. Quotes are made for educational purposes only in compliance with the fair use doctrine.

FAIR USE NOTICE This site contains copyrighted material the use of which has not always been specifically authorized by the copyright owner. We are making such material available to advance understanding of computer science, IT technology, economic, scientific, and social issues. We believe this constitutes a 'fair use' of any such copyrighted material as provided by section 107 of the US Copyright Law according to which such material can be distributed without profit exclusively for research and educational purposes.

This is a Spartan WHYFF (We Help You For Free) site written by people for whom English is not a native language. Grammar and spelling errors should be expected. The site contain some broken links as it develops like a living tree...

You can use PayPal to to buy a cup of coffee for authors of this site

Disclaimer:

The statements, views and opinions presented on this web page are those of the author (or referenced source) and are not endorsed by, nor do they necessarily reflect, the opinions of the Softpanorama society. We do not warrant the correctness of the information provided or its fitness for any purpose. The site uses AdSense so you need to be aware of Google privacy policy. You you do not want to be tracked by Google please disable Javascript for this site. This site is perfectly usable without Javascript.

Last modified: March, 12, 2019