Softpanorama

May the source be with you, but remember the KISS principle ;-)
Home Switchboard Unix Administration Red Hat TCP/IP Networks Neoliberalism Toxic Managers
(slightly skeptical) Educational society promoting "Back to basics" movement against IT overcomplexity and  bastardization of classic Unix

Python switch statement

The simplest way to imitate case statement in Python is to use if elif... construct.  The main drawback is that expression that  selected the code  block might be  evaluated multiple time, but you can factor this out of if.

In C:
switch(n) {
  case 0:
    printf("You typed zero.\n");
    break;
  case 1:
  case 9:
    printf("n is a perfect square\n");
    break;
  case 2:
    printf("n is an even number\n");
  case 3:
  case 5:
  case 7:
    printf("n is a prime number\n");
    break;
  case 4:
    printf("n is a perfect square\n");
  case 6:
  case 8:
    printf("n is an even number\n");
    break;
  default:
    printf("Only single-digit numbers are allowed\n");
  break;
}

In Python: 

if n == 0:
    print "You typed zero.\n"
elif n== 1 or n == 9 or n == 4:
    print "n is a perfect square\n"
elif n == 2:
    print "n is an even number\n"
elif  n== 3 or n == 5 or n == 7:
    print "n is a prime number\n"
 
 
 
options = {0 : zero,
                1 : sqr,
                4 : sqr,
                9 : sqr,
                2 : even,
                3 : prime,
                5 : prime,
                7 : prime,
}
 
def zero():
    print "You typed zero.\n"
 
def sqr():
    print "n is a perfect square\n"
 
def even():
    print "n is an even number\n"
 
def prime():
    print "n is a prime number\n"
 

The python if statements start to look a lot nicer (for this example) when you use `in`. I also took the liberty of removing the extra ‘\n’ since it isn’t necessary with 2.x’s print statement:
if n == 0:
    print "You typed zero."
elif n == 2:
    print "n is an even number"
elif n in (1, 9, 4)
    print "n is a perfect square"
elif  n in (3, 5, 7):
    print "n is a prime number"

Wrapping the entire thing in a single-execution loop (e.g. a while loop which sets its condition to false on the first line) makes it quite easy to break out from it, though that might not be very “Pythonic”. A little more planning re: mutually exclusive options and you could reduce the number of checks that have to get made every time the code is run. However, at the end of the day, if you are concerned about performance, do it in C


Top Visited
Switchboard
Latest
Past week
Past month

NEWS CONTENTS

Old News ;-)

[Nov 14, 2019] How to implement a switch-case statement in Python by Sreeram Sceenivasan

Oct 24, 2017 | jaxenter.com

...You can use it to execute different blocks of code, depending on the variable value during runtime. Here's an example of a switch statement in Java.

public static void switch_demo(String[] args) {
 
        int month = 8;
        String monthString;
        switch (month) {
            case 1:  monthString = "January";
                     break;
            case 2:  monthString = "February";
                     break;
            case 3:  monthString = "March";
                     break;
            case 4:  monthString = "April";
                     break;
            case 5:  monthString = "May";
                     break;
            case 6:  monthString = "June";
                     break;
            case 7:  monthString = "July";
                     break;
            case 8:  monthString = "August";
                     break;
            case 9:  monthString = "September";
                     break;
            case 10: monthString = "October";
                     break;
            case 11: monthString = "November";
                     break;
            case 12: monthString = "December";
                     break;
            default: monthString = "Invalid month";
                     break;
        }
        System.out.println(monthString);
}

Here's how it works:

  1. Compiler generates a jump table for switch case statement
  2. The switch variable/expression is evaluated once
  3. Switch statement looks up the evaluated variable/expression in the jump table and directly decides which code block to execute.
  4. If no match is found, then the code under default case is executed

In the above example, depending on the value of variable month , a different message will be displayed in the standard output. In this case, since the month=8, 'August' will be printed in standard output.

Read also: An introduction to the Python programming language

When Guido van Rossum developed Python, he wanted to create a "simple" programming language that bypassed the vulnerabilities of other systems. Due to the simple syntax and sophisticated syntactic phrases, the language has become the standard for various scientific applications such as machine learning. Switch statements

Although popular languages like Java and PHP have in-built switch statement, you may be surprised to know that Python language doesn't have one. As such, you may be tempted to use a series of if-else-if blocks, using an if condition for each case of your switch statement.

However, because of the jump table, a switch statement is much faster than an if-else-if ladder. Instead of evaluating each condition sequentially, it only has to look up the evaluated variable/expression once and directly jump to the appropriate branch of code to execute it.

SEE MORE: Python jumps past Java, Javascript is still most popular language for GitHubbers

How to implement switch statement in Python

The Pythonic way to implement switch statement is to use the powerful dictionary mappings, also known as associative arrays, that provide simple one-to-one key-value mappings.

def switch_demo(argument):
switcher = {
  1: "January",
  2: "February",
  3: "March",
  4: "April",
  5: "May",
  6: "June",
  7: "July",
  8: "August",
  9: "September",
  10: "October",
  11: "November",
  12: "December"
}
print switcher.get(argument, "Invalid month")

Here's the Python implementation of the above switch statement. In the following example, we create a dictionary named switcher to store all the switch-like cases.

In the above example, when you pass an argument to the switch_demo function, it is looked up against the switcher dictionary mapping. If a match is found, the associated value is printed, else a default string ('Invalid Month') is printed. The default string helps implement the 'default case' of a switch statement.

Dictionary mapping for functions

Here's where it gets more interesting. The values of a Python dictionary can be of any data type. So you don't have to confine yourself to using constants (integers, strings), you can also use function names and lambdas as values.

For example, you can also implement the above switch statement by creating a dictionary of function names as values. In this case, switcher is a dictionary of function names, and not strings.

def one():
    return "January"
 
def two():
    return "February"
 
def three():
    return "March"
 
def four():
    return "April"
 
def five():
    return "May"
 
def six():
    return "June"
 
def seven():
    return "July"
 
def eight():
    return "August"
 
def nine():
    return "September"
 
def ten():
    return "October"
 
def eleven():
    return "November"
 
def twelve():
    return "December"
 
 
def numbers_to_months(argument):
    switcher = {
        1: one,
        2: two,
        3: three,
        4: four,
        5: five,
        6: six,
        7: seven,
        8: eight,
        9: nine,
        10: ten,
        11: eleven,
        12: twelve
    }
    # Get the function from switcher dictionary
    func = switcher.get(argument, lambda: "Invalid month")
    # Execute the function
    print func()

Although the above functions are quite simple and only return strings, you can use this approach to execute elaborate blocks of code within each function.

... ... ...

[Nov 10, 2019] How to implement a switch-case statement in Python by Sreeram Sceenivasan

Oct 24, 2017| jaxenter.com

...You can use it to execute different blocks of code, depending on the variable value during runtime. Here's an example of a switch statement in Java.

public static void switch_demo(String[] args) {
 
        int month = 8;
        String monthString;
        switch (month) {
            case 1:  monthString = "January";
                     break;
            case 2:  monthString = "February";
                     break;
            case 3:  monthString = "March";
                     break;
            case 4:  monthString = "April";
                     break;
            case 5:  monthString = "May";
                     break;
            case 6:  monthString = "June";
                     break;
            case 7:  monthString = "July";
                     break;
            case 8:  monthString = "August";
                     break;
            case 9:  monthString = "September";
                     break;
            case 10: monthString = "October";
                     break;
            case 11: monthString = "November";
                     break;
            case 12: monthString = "December";
                     break;
            default: monthString = "Invalid month";
                     break;
        }
        System.out.println(monthString);
}

Here's how it works:

  1. Compiler generates a jump table for switch case statement
  2. The switch variable/expression is evaluated once
  3. Switch statement looks up the evaluated variable/expression in the jump table and directly decides which code block to execute.
  4. If no match is found, then the code under default case is executed

In the above example, depending on the value of variable month , a different message will be displayed in the standard output. In this case, since the month=8, 'August' will be printed in standard output.

Read also: An introduction to the Python programming language

When Guido van Rossum developed Python, he wanted to create a "simple" programming language that bypassed the vulnerabilities of other systems. Due to the simple syntax and sophisticated syntactic phrases, the language has become the standard for various scientific applications such as machine learning. Switch statements

Although popular languages like Java and PHP have in-built switch statement, you may be surprised to know that Python language doesn't have one. As such, you may be tempted to use a series of if-else-if blocks, using an if condition for each case of your switch statement.

However, because of the jump table, a switch statement is much faster than an if-else-if ladder. Instead of evaluating each condition sequentially, it only has to look up the evaluated variable/expression once and directly jump to the appropriate branch of code to execute it.

SEE MORE: Python jumps past Java, Javascript is still most popular language for GitHubbers

How to implement switch statement in Python

The Pythonic way to implement switch statement is to use the powerful dictionary mappings, also known as associative arrays, that provide simple one-to-one key-value mappings.

def switch_demo(argument):
switcher = {
  1: "January",
  2: "February",
  3: "March",
  4: "April",
  5: "May",
  6: "June",
  7: "July",
  8: "August",
  9: "September",
  10: "October",
  11: "November",
  12: "December"
}
print switcher.get(argument, "Invalid month")

Here's the Python implementation of the above switch statement. In the following example, we create a dictionary named switcher to store all the switch-like cases.

In the above example, when you pass an argument to the switch_demo function, it is looked up against the switcher dictionary mapping. If a match is found, the associated value is printed, else a default string ('Invalid Month') is printed. The default string helps implement the 'default case' of a switch statement.

Dictionary mapping for functions

Here's where it gets more interesting. The values of a Python dictionary can be of any data type. So you don't have to confine yourself to using constants (integers, strings), you can also use function names and lambdas as values.

For example, you can also implement the above switch statement by creating a dictionary of function names as values. In this case, switcher is a dictionary of function names, and not strings.

def one():
    return "January"
 
def two():
    return "February"
 
def three():
    return "March"
 
def four():
    return "April"
 
def five():
    return "May"
 
def six():
    return "June"
 
def seven():
    return "July"
 
def eight():
    return "August"
 
def nine():
    return "September"
 
def ten():
    return "October"
 
def eleven():
    return "November"
 
def twelve():
    return "December"
 
 
def numbers_to_months(argument):
    switcher = {
        1: one,
        2: two,
        3: three,
        4: four,
        5: five,
        6: six,
        7: seven,
        8: eight,
        9: nine,
        10: ten,
        11: eleven,
        12: twelve
    }
    # Get the function from switcher dictionary
    func = switcher.get(argument, lambda: "Invalid month")
    # Execute the function
    print func()

Although the above functions are quite simple and only return strings, you can use this approach to execute elaborate blocks of code within each function.

... ... ...

Recommended Links

Google matched content

Softpanorama Recommended

Top articles

Sites

Switch-case statement in Python revisited



Etc

Society

Groupthink : Two Party System as Polyarchy : Corruption of Regulators : Bureaucracies : Understanding Micromanagers and Control Freaks : Toxic Managers :   Harvard Mafia : Diplomatic Communication : Surviving a Bad Performance Review : Insufficient Retirement Funds as Immanent Problem of Neoliberal Regime : PseudoScience : Who Rules America : Neoliberalism  : The Iron Law of Oligarchy : Libertarian Philosophy

Quotes

War and Peace : Skeptical Finance : John Kenneth Galbraith :Talleyrand : Oscar Wilde : Otto Von Bismarck : Keynes : George Carlin : Skeptics : Propaganda  : SE quotes : Language Design and Programming Quotes : Random IT-related quotesSomerset Maugham : Marcus Aurelius : Kurt Vonnegut : Eric Hoffer : Winston Churchill : Napoleon Bonaparte : Ambrose BierceBernard Shaw : Mark Twain Quotes

Bulletin:

Vol 25, No.12 (December, 2013) Rational Fools vs. Efficient Crooks The efficient markets hypothesis : Political Skeptic Bulletin, 2013 : Unemployment Bulletin, 2010 :  Vol 23, No.10 (October, 2011) An observation about corporate security departments : Slightly Skeptical Euromaydan Chronicles, June 2014 : Greenspan legacy bulletin, 2008 : Vol 25, No.10 (October, 2013) Cryptolocker Trojan (Win32/Crilock.A) : Vol 25, No.08 (August, 2013) Cloud providers as intelligence collection hubs : Financial Humor Bulletin, 2010 : Inequality Bulletin, 2009 : Financial Humor Bulletin, 2008 : Copyleft Problems Bulletin, 2004 : Financial Humor Bulletin, 2011 : Energy Bulletin, 2010 : Malware Protection Bulletin, 2010 : Vol 26, No.1 (January, 2013) Object-Oriented Cult : Political Skeptic Bulletin, 2011 : Vol 23, No.11 (November, 2011) Softpanorama classification of sysadmin horror stories : Vol 25, No.05 (May, 2013) Corporate bullshit as a communication method  : Vol 25, No.06 (June, 2013) A Note on the Relationship of Brooks Law and Conway Law

History:

Fifty glorious years (1950-2000): the triumph of the US computer engineering : Donald Knuth : TAoCP and its Influence of Computer Science : Richard Stallman : Linus Torvalds  : Larry Wall  : John K. Ousterhout : CTSS : Multix OS Unix History : Unix shell history : VI editor : History of pipes concept : Solaris : MS DOSProgramming Languages History : PL/1 : Simula 67 : C : History of GCC developmentScripting Languages : Perl history   : OS History : Mail : DNS : SSH : CPU Instruction Sets : SPARC systems 1987-2006 : Norton Commander : Norton Utilities : Norton Ghost : Frontpage history : Malware Defense History : GNU Screen : OSS early history

Classic books:

The Peter Principle : Parkinson Law : 1984 : The Mythical Man-MonthHow to Solve It by George Polya : The Art of Computer Programming : The Elements of Programming Style : The Unix Hater’s Handbook : The Jargon file : The True Believer : Programming Pearls : The Good Soldier Svejk : The Power Elite

Most popular humor pages:

Manifest of the Softpanorama IT Slacker Society : Ten Commandments of the IT Slackers Society : Computer Humor Collection : BSD Logo Story : The Cuckoo's Egg : IT Slang : C++ Humor : ARE YOU A BBS ADDICT? : The Perl Purity Test : Object oriented programmers of all nations : Financial Humor : Financial Humor Bulletin, 2008 : Financial Humor Bulletin, 2010 : The Most Comprehensive Collection of Editor-related Humor : Programming Language Humor : Goldman Sachs related humor : Greenspan humor : C Humor : Scripting Humor : Real Programmers Humor : Web Humor : GPL-related Humor : OFM Humor : Politically Incorrect Humor : IDS Humor : "Linux Sucks" Humor : Russian Musical Humor : Best Russian Programmer Humor : Microsoft plans to buy Catholic Church : Richard Stallman Related Humor : Admin Humor : Perl-related Humor : Linus Torvalds Related humor : PseudoScience Related Humor : Networking Humor : Shell Humor : Financial Humor Bulletin, 2011 : Financial Humor Bulletin, 2012 : Financial Humor Bulletin, 2013 : Java Humor : Software Engineering Humor : Sun Solaris Related Humor : Education Humor : IBM Humor : Assembler-related Humor : VIM Humor : Computer Viruses Humor : Bright tomorrow is rescheduled to a day after tomorrow : Classic Computer Humor

The Last but not Least Technology is dominated by two types of people: those who understand what they do not manage and those who manage what they do not understand ~Archibald Putt. Ph.D


Copyright © 1996-2021 by Softpanorama Society. www.softpanorama.org was initially created as a service to the (now defunct) UN Sustainable Development Networking Programme (SDNP) without any remuneration. This document is an industrial compilation designed and created exclusively for educational use and is distributed under the Softpanorama Content License. Original materials copyright belong to respective owners. Quotes are made for educational purposes only in compliance with the fair use doctrine.

FAIR USE NOTICE This site contains copyrighted material the use of which has not always been specifically authorized by the copyright owner. We are making such material available to advance understanding of computer science, IT technology, economic, scientific, and social issues. We believe this constitutes a 'fair use' of any such copyrighted material as provided by section 107 of the US Copyright Law according to which such material can be distributed without profit exclusively for research and educational purposes.

This is a Spartan WHYFF (We Help You For Free) site written by people for whom English is not a native language. Grammar and spelling errors should be expected. The site contain some broken links as it develops like a living tree...

You can use PayPal to to buy a cup of coffee for authors of this site

Disclaimer:

The statements, views and opinions presented on this web page are those of the author (or referenced source) and are not endorsed by, nor do they necessarily reflect, the opinions of the Softpanorama society. We do not warrant the correctness of the information provided or its fitness for any purpose. The site uses AdSense so you need to be aware of Google privacy policy. You you do not want to be tracked by Google please disable Javascript for this site. This site is perfectly usable without Javascript.

Last modified: November 14, 2019